

Algorithm Design - Tardos, Eva
- Format: Broché
- 828 pages Voir le descriptif
Vous en avez un à vendre ?
Vendez-le-vôtre199,98 €
Produit Neuf
Ou 50,00 € /mois
- Livraison : 5,00 €
- Livré entre le 26 et le 29 juillet
Exp¿di¿ en 6 jours ouvr¿s
Nos autres offres
-
157,84 €
Produit Neuf
Ou 39,46 € /mois
- Livraison : 3,99 €
- Livré entre le 28 et le 30 juillet
-
199,98 €
Produit Neuf
Ou 50,00 € /mois
- Livraison : 5,00 €
- Livré entre le 26 et le 29 juillet
Exp¿di¿ en 6 jours ouvr¿s
-
188,99 €
Produit Neuf
Ou 47,25 € /mois
- Livraison : 25,00 €
- Livré entre le 8 et le 13 août
- Payez directement sur Rakuten (CB, PayPal, 4xCB...)
- Récupérez le produit directement chez le vendeur
- Rakuten vous rembourse en cas de problème
Gratuit et sans engagement
Félicitations !
Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !
TROUVER UN MAGASIN
Retour

Avis sur Algorithm Design Format Broché - Livre
0 avis sur Algorithm Design Format Broché - Livre
Donnez votre avis et cumulez 5
Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.
Présentation Algorithm Design Format Broché
- LivreAuteur(s) : Tardos, Eva - Kleinberg, JonEditeur : Pearson Education LimitedLangue : AnglaisParution : 01/08/2013Format : Moyen, de 350g à 1kgNombre de pages : 828Expédition :...
Résumé : August 6, 2009 Author, Jon Kleinberg, was recently cited in the for his statistical analysis research in the Internet age. Algorithm Design introduces algorithms by looking at the real-world problems that motivate them. The book teaches students a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.
Sommaire: Algorithm Design Jon Kleinberg and Eva Tardos Table of Contents 1 Introduction: Some Representative Problems 1.1 A First Problem: Stable Matching 1.2 Five Representative Problems Solved Exercises Excercises Notes and Further Reading 2 Basics of Algorithms Analysis 2.1 Computational Tractability 2.2 Asymptotic Order of Growth Notation 2.3 Implementing the Stable Matching Algorithm using Lists and Arrays 2.4 A Survey of Common Running Times 2.5 A More Complex Data Structure: Priority Queues Solved Exercises Exercises Notes and Further Reading 3 Graphs 3.1 Basic Definitions and Applications 3.2 Graph Connectivity and Graph Traversal 3.3 Implementing Graph Traversal using Queues and Stacks 3.4 Testing Bipartiteness: An Application of Breadth-First Search 3.5 Connectivity in Directed Graphs 3.6 Directed Acyclic Graphs and Topological Ordering Solved Exercises Exercises Notes and Further Reading 4 Divide and Conquer 4.1 A First Recurrence: The Mergesort Algorithm 4.2 Further Recurrence Relations 4.3 Counting Inversions 4.4 Finding the Closest Pair of Points 4.5 Integer Multiplication 4.6 Convolutions and The Fast Fourier Transform Exercises 5 Greedy Algorithms 5.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 5.2 Scheduling to Minimize Lateness: An Exchange Argument 5.3 Optimal Caching: A More Complex Exchange Argument 5.4 Shortest Paths in a Graph 5.5 The Minimum Spanning Tree Problem 5.6 Implementing Kruskal's Algorithm: The Union-Find Data Structure 5.7 Clustering 5.8 Huffman Codes and the Problem of Data Compression *5.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm Excercises Notes and Further Reading 6 Dynamic Programming 6.1 Weighted Interval Scheduling: A Recursive Procedure 6.2 Weighted Interval Scheduling: Iterating over Sub-Problems 6.3 Segmented Least Squares: Multi-way Choices 6.4 Subset Sums and Knapsacks: Adding a Variable 6.5 RNA Secondary Structure: Dynamic Programming Over Intervals 6.6 Sequence Alignment 6.7 Sequence Alignment in Linear Space 6.8 Shortest Paths in a Graph 6.9 Shortest Paths and Distance Vector Protocols *6.10 Negative Cycles in a Graph Solved Exercises Exercises 7 Network Flow 7.1 The Maximum Flow Problem and the Ford-Fulkerson Algorithm 7.2 Maximum Flows and Minimum Cuts in a Network 7.3 Choosing Good Augmenting Paths *7.4 The Preflow-Push Maximum Flow Algorithm 7.5 A First Application: The Bipartite Matching Problem 7.6 Disjoint Paths in Directed and Undirected Graphs 7.7 Extensions to the Maximum Flow Problem 7.8 Survey Design 7.9 Airline Scheduling 7.10 Image Segmentation&nbs
Détails de conformité du produit
Personne responsable dans l'UE