Personnaliser

OK
Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group
icons / nav24 / chevron down
GeolocRechercher autour de moi

R-Ticulate - Bader, Martin

Note : 0

0 avis
  • Soyez le premier à donner un avis

Vous en avez un à vendre ?

Vendez-le-vôtre
Filtrer par :
Neuf (4)
Occasion
Reconditionné

176,42 €

Produit Neuf

  • Ou 44,11 € /mois

    • Livraison : 5,00 €
    • Livré entre le 31 janvier et le 3 février
    Voir les modes de livraisons

    LIBRINTER

    PRO Vendeur favori

    4,9/5 sur + de 1 000 ventes

    Exp¿di¿ en 6 jours ouvr¿s

    Nos autres offres

    Publicité

    Détails de conformité du produit

    Consulter les détails de conformité de ce produit (

    Personne responsable dans l'UE

    )
     
    Vous avez choisi le retrait chez le vendeur à
    • Payez directement sur Rakuten (CB, PayPal, 4xCB...)
    • Récupérez le produit directement chez le vendeur
    • Rakuten vous rembourse en cas de problème

    Gratuit et sans engagement

    Félicitations !

    Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !

    En savoir plus

    Retour

    Horaires

        Note :


        Avis sur R - Ticulate Format Relié  - Livre Informatique

        Note : 0 0 avis sur R - Ticulate Format Relié  - Livre Informatique

        Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.


        Présentation R - Ticulate Format Relié

         - Livre Informatique

        • Auteur(s) : Bader, Martin - Leuzinger, Sebastian
        • Editeur : Wiley
        • Langue : Anglais
        • Parution : 01/07/2024
        • Format : Moyen, de 350g à 1kg
        • Nombre de pages : 224
        • Dimensions : 26.1 x 18.5 x 1.4

        Résumé :

        Foreword ix

        Preface xi

        About the Companion Website xiii

        1 Hypotheses, Variables, Data 1

        1.1 Occam's Razor 2

        1.2 Scientific Hypotheses 2

        1.3 The Choice of a Software 3

        1.3.1 First Steps in R 3

        1.4 Variables 5

        1.4.1 Variable Names and Values 5

        1.4.2 Types of Variables 10

        1.4.3 Predictor and Response Variables 11

        1.5 Data Processing and Data Formats 12

        1.5.1 The Long vs. the Wide Format 12

        1.5.2 Choice of Variable, Dataset, and File Names 12

        1.5.3 Adding, Removing, and Subsetting Variables and Data Frames 14

        1.5.4 Aggregating Data 17

        1.5.5 Working with Time and Strings 19

        2 Measuring Variation 23

        2.1 What Is Variation? 23

        2.2 Treatment vs. Control 23

        2.3 Systematic and Unsystematic Variation 24

        2.4 The Signal-to-Noise Ratio 25

        2.5 Measuring Variation Graphically 26

        2.6 Measuring Variation Using Metrics 27

        2.7 The Standard Error 29

        2.8 Population vs. Sample 31

        3 Distributions and Probabilities 35

        3.1 Probability Distributions 35

        3.2 Finding the Best Fitting Distribution for Sample Data 37

        3.2.1 Graphical Tools 37

        3.2.2 Goodness-of-Fit Tests 39

        3.3 Quantiles 42

        3.4 Probabilities 44

        3.4.1 Density Functions (dnorm, dbinom, .) 44

        3.4.2 Probability Distribution Functions (pnorm, pbinom, .) 46

        3.4.3 Quantile Functions (qnorm, qbinom, .) 48

        3.4.4 Random Sampling Functions (rnorm, rbinom, .) 49

        3.5 The Normal Distribution 50

        3.6 Central Limit Theorem 50

        3.7 Test Statistics 52

        3.7.1 Null and Alternative Hypotheses 53

        3.7.2 The Alpha Threshold and Significance Levels 54

        3.7.3 Type I and Type II Errors 54

        References 56

        4 Replication and Randomisation 57

        4.1 Replication 57

        4.2 Statistical Independence 60

        4.3 Randomisation 61

        4.4 Randomisation in R 64

        4.5 Spatial Replication and Randomisation in Observational Studies 65

        5 Two-Sample and One-Sample Tests 67

        5.1 The t-Statistic 67

        5.2 Two Sample Tests: Comparing Two Groups 67

        5.2.1 Student's t-Test 67

        5.2.1.1 Testing for Normality 68

        5.2.1.2 What to Write in a Report or Paper and How to Visualise the Results of a t-Test 74

        5.2.1.3 Two-Tailed vs. One-Tailed t-Tests 75

        5.2.2 Rank-Based Two-Sample Tests 77

        5.3 One-Sample Tests 78

        5.4 Power Analyses and Sample Size Determination 79

        6 Communicating Quantitative Information Using Visuals 83

        6.1 The Fundamentals of Scientific Plotting 84

        6.2 Scatter Plots 85

        6.3 Line Plots 87

        6.4 Box Plots and Bar Plots 89

        6.5 Multipanel Plots and Plotting Regions 91

        6.6 Adding Text, Formulae, and Colour 92

        6.7 Interaction Plots 94

        6.8 Images, Colour Contour Plots, and 3D Plots 94

        6.8.1 Adding Images to Plots 94

        6.8.2 Colour Contour Plots 96

        References 101

        7 Working with Categorical Data 103

        7.1 Tabling and Visualising Categorical Data 103

        7.2 Contingency Tables 105

        7.3 The Chi-squared Test 106

        7.4 Decision Trees 108

        7.5 Optimising Decision Trees 111

        References 113

        8 Working with Continuous Data 115

        8.1 Covariance 115

        8.2 Correlation Coefficient 116

        8.3 Transformations 118

        8.4 Plotting Correlations 120

        8.5 Correlation Tests 122

        References 124

        9 Linear Regression 125

        9.1 Basics and Simple Linear Regression 125

        9.1.1 Making Sense of the summary Output for Regression Models Fitted with lm 128

        ...

        Biographie:

        Martin Bader gained an MSc in geography at Saarland University in Germany and an MSc in biology at Waikato University, New Zealand. He earned a PhD in plant ecology at the University of Basel, Switzerland. After post-doctoral stints in Switzerland and Australia he joined the New Zealand Forest Research Institute as a forest ecologist and biostatistician. Following a senior lecturer appointment at Auckland University of Technology, New Zealand, he is now a professor of forest ecology at Linnaeus University, Sweden. He has taught undergraduate and postgraduate courses in statistics at universities and research institutes in various parts of the world. His research focuses on the physiological responses of plants to climate change and their biotic interactions.

        Sebastian Leuzinger did his first degree in marine biology at James Cook University, Australia, with a postgraduate degree in statistics (University of Neuchatel, Switzerland) and a PhD in plant ecology (University of Basel, Switzerland). He has done post-doctoral studies at ETH Zurich, Switzerland, in forest ecology and modelling before joining Auckland University of Technology where he is a full professor in ecology. He has taught undergraduate and postgraduate statistics for natural scientists for over a decade. His research is on global change impacts on plants, with a special interest in meta-analysis of global change experiments....

        Sommaire:

        An accessible learning resource that develops data analysis skills for natural science students in an efficient style using the R programming language

        R-ticulate: A Beginner's Guide to Data Analysis for Natural Scientists is a compact, example-based, and user-friendly statistics textbook without unnecessary frills, but instead filled with engaging, relatable examples, practical tips, online exercises, resources, and references to extensions, all on a level that follows contemporary curricula taught in large parts of the world.

        The content structure is unique in the sense that statistical skills are introduced at the same time as software (programming) skills in R. This is by far the best way of teaching from the authors' experience.

        Readers of this introductory text will find:

        • Explanations of statistical concepts in simple, easy-to-understand language
        • A variety of approaches to problem solving using both base R and tidyverse
        • Boxes dedicated to specific topics and margin text that summarizes key points
        • A clearly outlined schedule organized into 12 chapters corresponding to the 12 semester weeks of most universities

        While at its core a traditional printed book, R-ticulate: A Beginner's Guide to Data Analysis for Natural Scientists comes with a wealth of online teaching material, making it an ideal and efficient reference for students who wish to gain a thorough understanding of the subject, as well as for instructors teaching related courses....

        Neuf et occasion
        Le choixNeuf et occasion
        5% remboursés
        Minimum5% remboursés
        Satisfait ou remboursé
        La sécuritéSatisfait ou remboursé
        À votre écoute
        Le service clientsÀ votre écoute
        LinkedinFacebookTwitterInstagramYoutubePinterestTiktok
        visavisa
        mastercardmastercard
        klarnaklarna
        paypalpaypal
        floafloa
        americanexpressamericanexpress
        RakutenLogos.svg
        • Rakuten Kobo
        • Rakuten TV
        • Rakuten Viber
        • Rakuten Viki
        • Plus de services
        • À propos de Rakuten
        Rakuten.com