

The Symbol of a Markov Semimartingale - Jan Alexander Schnurr
- Format: Broché
- 120 pages Voir le descriptif
Vous en avez un à vendre ?
Vendez-le-vôtre171,99 €
Occasion · Comme Neuf
Ou 43,00 € /mois
- Payez directement sur Rakuten (CB, PayPal, 4xCB...)
- Récupérez le produit directement chez le vendeur
- Rakuten vous rembourse en cas de problème
Gratuit et sans engagement
Félicitations !
Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !
TROUVER UN MAGASIN
Retour

Avis sur The Symbol Of A Markov Semimartingale de Jan Alexander Schnurr Format Broché - Livre
0 avis sur The Symbol Of A Markov Semimartingale de Jan Alexander Schnurr Format Broché - Livre
Donnez votre avis et cumulez 5
Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.
Présentation The Symbol Of A Markov Semimartingale de Jan Alexander Schnurr Format Broché
- LivreAuteur(s) : Jan Alexander SchnurrEditeur : ShakerLangue : AnglaisParution : 01/06/2009Format : Moyen, de 350g à 1kgNombre de pages : 120Expédition : 172Dimensions : 21.1 x 14.9 x 1.2 ...
Résumé :
For L?vy processes it is a well known fact that there is a one-to-one correspondence between the elements of this class of processes and the so called continuous negative definite functions in the sense of Schoenberg ? : R d -? C. The connection between these concepts is given by E x e i(Xt-x)' ? = e -t?(?) . In particular it is known that to every continuous negative definite function ? there exists a corresponding L?vy process (Xt)t=0. Several properties of the process can be expressed in terms of analytic properties of its characteristic exponent ?. Within the class of (universal) Markov processes, L?vy processes are those which are stochastically continuous and homogeneous in time and space. From the perspective of stochastic modeling the last point is a rather strong restriction since it means that the process 'behaves the same' on every point in space and time. Therefore, it is an interesting question if there exists a function, which is somehow similar to the characteristic exponent of a L?vy process, for a larger class of Markov processes. A class to start with is the one of (nice) Feller processes, i.e. Feller processes with the property that the test functions C8 c (Rd) are contained in the domain of their generator. In the investigation of these processes, a family of continuous negative definite functions ? ?-? p(x, ?), (x ? Rd ) shows up in the Fourier representation of the generator ? Au(x) = - e ix' ? 8 p(x, ?)?(?) d? for u ? Cc (R d ).
Détails de conformité du produit
Personne responsable dans l'UE