Personnaliser

OK
Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group
ClubR
Euro

Mettre en vente

Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group

Deep Learning Systems: Algorithms, Compilers, and Processors for Large-Scale Production - Andres Rodriguez

Note : 0

0 avis
  • Soyez le premier à donner un avis

Vous en avez un à vendre ?

Vendez-le-vôtre

24,89 €

Produit Neuf

  • Livraison : 0,00 €
  • Livré entre le 4 et le 7 août
Voir les modes de livraison

ORIG1

PRO Vendeur favori

4,6/5 sur 209 ventes

Livre de poche,Expédition depuis la Chine; Livraison sous 8-12 jours

Publicité
 
Vous avez choisi le retrait chez le vendeur à
  • Payez directement sur Rakuten (CB, PayPal, 4xCB...)
  • Récupérez le produit directement chez le vendeur
  • Rakuten vous rembourse en cas de problème

Gratuit et sans engagement

Félicitations !

Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !

En savoir plus

Retour

Horaires

      Note :


      Avis sur Deep Learning Systems: Algorithms, Compilers, And Processors For Large - Scale Production Format Broché  - Livre

      Note : 0 0 avis sur Deep Learning Systems: Algorithms, Compilers, And Processors For Large - Scale Production Format Broché  - Livre

      Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.


      Présentation Deep Learning Systems: Algorithms, Compilers, And Processors For Large - Scale Production Format Broché

       - Livre

      Livre - Andres Rodriguez - 01/10/2020 - Broché - Langue : Anglais

      Auteur(s) : Andres RodriguezEditeur : Morgan & ClaypoolLangue : AnglaisParution : 01/10/2020Nombre de pages : 265Expédition : 503Dimensions : 23.5 x 19.1 x 1.4 Résumé :This...

    • Auteur(s) : Andres Rodriguez
    • Editeur : Morgan & Claypool
    • Langue : Anglais
    • Parution : 01/10/2020
    • Nombre de pages : 265
    • Expédition : 503
    • Dimensions : 23.5 x 19.1 x 1.4
    • Résumé :
      This book describes deep learning systems: the algorithms, compilers, and processor components to efficiently train and deploy deep learning models for commercial applications. The exponential growth in computational power is slowing at a time when the amount of compute consumed by state-of-the-art deep learning (DL) workloads is rapidly growing. Model size, serving latency, and power constraints are a significant challenge in the deployment of DL models for many applications. Therefore, it is imperative to codesign algorithms, compilers, and hardware to accelerate advances in this field with holistic system-level and algorithm solutions that improve performance, power, and efficiency. Advancing DL systems generally involves three types of engineers: (1) data scientists that utilize and develop DL algorithms in partnership with domain experts, such as medical, economic, or climate scientists; (2) hardware designers that develop specialized hardware to accelerate the components in the DL models; and (3) performance and compiler engineers that optimize software to run more efficiently on a given hardware. Hardware engineers should be aware of the characteristics and components of production and academic models likely to be adopted by industry to guide design decisions impacting future hardware. Data scientists should be aware of deployment platform constraints when designing models. Performance engineers should support optimizations across diverse models, libraries, and hardware targets. The purpose of this book is to provide a solid understanding of (1) the design, training, and applications of DL algorithms in industry; (2) the compiler techniques to map deep learning code to hardware targets; and (3) the critical hardware features that accelerate DL systems. This book aims to facilitate co-innovation for the advancement of DL systems. It is written for engineers working in one or more of these areas who seek to understand the entire system stack in order to better collaborate with engineers working in other parts of the system stack. The book details advancements and adoption of DL models in industry, explains the training and deployment process, describes the essential hardware architectural features needed for today's and future models, and details advances in DL compilers to efficiently execute algorithms across various hardware targets. Unique in this book is the holistic exposition of the entire DL system stack, the emphasis on commercial applications, and the practical techniques to design models and accelerate their performance. The author is fortunate to work with hardware, software, data scientist, and research teams across many high-technology companies with hyperscale data centers. These companies employ many of the examples and methods provided throughout the book.

      Détails de conformité du produit

      Consulter les détails de conformité de ce produit (

      Personne responsable dans l'UE

      )
      Neuf et occasion
      Le choixNeuf et occasion
      5% remboursés
      Minimum5% remboursés
      Satisfait ou remboursé
      La sécuritéSatisfait ou remboursé
      À votre écoute
      Le service clientsÀ votre écoute
      LinkedinFacebookTwitterInstagramYoutubePinterestTiktok
      visavisa
      mastercardmastercard
      klarnaklarna
      paypalpaypal
      floafloa
      americanexpressamericanexpress
      RakutenLogos.svg
      • Rakuten Kobo
      • Rakuten TV
      • Rakuten Viber
      • Rakuten Viki
      • Plus de services
      • À propos de Rakuten
      Rakuten.com