Personnaliser

OK
Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group
ClubR
Euro

Mettre en vente

Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group

Statistics and Machine Learning Methods for EHR Data -

Note : 0

0 avis
  • Soyez le premier à donner un avis

Vous en avez un à vendre ?

Vendez-le-vôtre

30,77 €

Produit Neuf

  • Ou 7,69 € /mois

    • Livraison à 0,01 €
    • Livré entre le 4 et le 7 août
    Voir les modes de livraison

    ORIG1

    PRO Vendeur favori

    4,6/5 sur 209 ventes

    Livre de poche,Expédition depuis la Chine; Livraison sous 8-12 jours

    Publicité
     
    Vous avez choisi le retrait chez le vendeur à
    • Payez directement sur Rakuten (CB, PayPal, 4xCB...)
    • Récupérez le produit directement chez le vendeur
    • Rakuten vous rembourse en cas de problème

    Gratuit et sans engagement

    Félicitations !

    Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !

    En savoir plus

    Retour

    Horaires

        Note :


        Avis sur Statistics And Machine Learning Methods For Ehr Data Format Relié  - Livre Économie

        Note : 0 0 avis sur Statistics And Machine Learning Methods For Ehr Data Format Relié  - Livre Économie

        Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.


        Présentation Statistics And Machine Learning Methods For Ehr Data Format Relié

         - Livre Économie

        Livre Économie - 01/12/2020 - Relié - Langue : Anglais

        Editeur : Chapman And Hall/CrcLangue : AnglaisParution : 01/12/2020Format : Moyen, de 350g à 1kgNombre de pages : 328Expédition : 638Dimensions : 23.6 x 15.9 x 2.2 ...

      • Editeur : Chapman And Hall/Crc
      • Langue : Anglais
      • Parution : 01/12/2020
      • Format : Moyen, de 350g à 1kg
      • Nombre de pages : 328
      • Expédition : 638
      • Dimensions : 23.6 x 15.9 x 2.2
      • Résumé :
        1. Introduction: Use of EHR Data for Research-Challenges and Opportunities. 2. EHR Project Management. 3. EHR Databases: Data Queries and Extraction. 4. EHR Data Cleaning. 5. EHR Data Pre-Processing and Preparation. 6. EHR Missing Data Issues. 7. Causal Inference and Analysis for EHR Data. 8. EHR Data Exploration, Analysis and Predictions: Statistical Models and Methods. 9. EHR Data Analytics and Predictions: Neural Network and Deep Learning Methods. 10. EHR Data Analytics and Predictions: Other Machine Learning Methods. 11. Use of EHR Data for Research: Future....

        Biographie:

        • Hulin Wu, PhD, the endowed Betty Wheless Trotter Professor and Chair, Department of Biostatistics & Data Science, School of Public Health (SPH), University of Texas Health Science Center at Houston (UTHealth). Dr. Wu also holds a joined appointment as Professor at UTHealth School of Biomedical Informatics. Dr. Wu received BS and MS training in engineering and PhD in statistics. He has many years of experience in developing novel statistical methods, mathematical models and informatics tools for biomedical data analysis and modeling. He is the Founding Director of the Center for Big Data in Health Sciences (CBD-HS) and he is directing the EHR research working group at UTHealth SPH.

        • Dr. Yamal is a tenured Associate Professor in the Department of Biostatistics & Data Science and a member of the Coordinating Center for Clinical Trials at UTHealth School of Public Health. Dr. Yamal has extensive experience in clinical trials including data coordinating centers and serving on Data Safety Monitoring Boards for clinical trials in stroke and traumatic brain injury. He has also contributed towards statistical methodology for classification problems for nested data as well as machine learning applications.
        • Ashraf Yaseen is an Assistant Professor of Data Science at the School of Public Health, UTHealth. He has extensive experience in database design, implementation and management, machine learning, and high-performance computing. In his current research work, Dr. Yaseen is exploring big data integration and deep learning technologies in electronic health records to address clinical and public health questions.

        • Vahed Maroufy, PhD, Assistant Professor, Department of Biostatistics & Data Science, UTHealth School of Public Health. Dr. Maroufy received MSc and PhD training in statistics and has experience in applied and theoretical statistics, including geometry of statistical models, mixture models, Bayesian inference, predictive models using EHR data, and analysis of genetic data in cancer research.

        Sommaire:
        1. Introduction: Use of EHR Data for Research-Challenges and Opportunities. 2. EHR Project Management. 3. EHR Databases: Data Queries and Extraction. 4. EHR Data Cleaning. 5. EHR Data Pre-Processing and Preparation. 6. EHR Missing Data Issues. 7. Causal Inference and Analysis for EHR Data. 8. EHR Data Exploration, Analysis and Predictions: Statistical Models and Methods. 9. EHR Data Analytics and Predictions: Neural Network and Deep Learning Methods. 10. EHR Data Analytics and Predictions: Other Machine Learning Methods. 11. Use of EHR Data for Research: Future....

        Détails de conformité du produit

        Consulter les détails de conformité de ce produit (

        Personne responsable dans l'UE

        )
        Neuf et occasion
        Le choixNeuf et occasion
        5% remboursés
        Minimum5% remboursés
        Satisfait ou remboursé
        La sécuritéSatisfait ou remboursé
        À votre écoute
        Le service clientsÀ votre écoute
        LinkedinFacebookTwitterInstagramYoutubePinterestTiktok
        visavisa
        mastercardmastercard
        klarnaklarna
        paypalpaypal
        floafloa
        americanexpressamericanexpress
        RakutenLogos.svg
        • Rakuten Kobo
        • Rakuten TV
        • Rakuten Viber
        • Rakuten Viki
        • Plus de services
        • À propos de Rakuten
        Rakuten.com