

Introduction to Algorithms for Data Mining and Machine Learning -
- Format: Broché
- 188 pages Voir le descriptif
Vous en avez un à vendre ?
Vendez-le-vôtre- Payez directement sur Rakuten (CB, PayPal, 4xCB...)
- Récupérez le produit directement chez le vendeur
- Rakuten vous rembourse en cas de problème
Gratuit et sans engagement
Félicitations !
Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !
TROUVER UN MAGASIN
Retour

Avis sur Introduction To Algorithms For Data Mining And Machine Learning de Collectif Format Broché - Livre
0 avis sur Introduction To Algorithms For Data Mining And Machine Learning de Collectif Format Broché - Livre
Donnez votre avis et cumulez 5
Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.
Présentation Introduction To Algorithms For Data Mining And Machine Learning de Collectif Format Broché
- LivreAuteur(s) : CollectifEditeur : Elsevier Science Publishing Co IncLangue : AnglaisParution : 01/06/2019Format : Moyen, de 350g à 1kgNombre de pages : 188Expédition : 322Dimensions : 15.3 x...
Résumé : Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data.
Biographie:
Xin-She Yang obtained his DPhil in Applied Mathematics from the University of Oxford. He then worked at Cambridge University and National Physical Laboratory (UK) as a Senior Research Scientist. He is currently a Reader at Middlesex University London, Adjunct Professor at Reykjavik University (Iceland) and Guest Professor at Xi?an Polytechnic University (China). He is an elected Bye-Fellow at Downing College, Cambridge University. He is also the IEEE CIS Chair for the Task Force on Business Intelligence and Knowledge Management, and the Editor-in-Chief of International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO).
Sommaire:
1. Introduction
2. Mathematical Foundations
3. Data Fitting and Method of Least Squares
4. Logistic Regression and PCA
5. Data Mining
6. Artificial Neural Networks
7. Support Vector Machine
8. Deep Learning
Détails de conformité du produit
Personne responsable dans l'UE