Personnaliser

OK
Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group
ClubR
Euro

Mettre en vente

Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group

Markov Random Fields - Iu A Rozanov

Note : 0

0 avis
  • Soyez le premier à donner un avis

Vous en avez un à vendre ?

Vendez-le-vôtre

76,99 €

Occasion · État Correct

  • Ou 19,25 € /mois

  • 3,85 € offerts
    • Livraison : 25,00 €
    • Livré entre le 8 et le 13 août
    Voir les modes de livraison
    • Protection acheteurs :
    • 0,00 €

    Kelindo

    PRO Vendeur favori

    4,8/5 sur + de 1 000 ventes

    Apres acceptation de la commande, le delai moyen d'expedition depuis le Japon est de 48 heures. Le delai moyen de livraison est de 3 a 4 semaines. En cas de circonstances exceptionnelles, les delais peuvent s'etendre jusqu'à 2 mois.

    Publicité
     
    Vous avez choisi le retrait chez le vendeur à
    • Payez directement sur Rakuten (CB, PayPal, 4xCB...)
    • Récupérez le produit directement chez le vendeur
    • Rakuten vous rembourse en cas de problème

    Gratuit et sans engagement

    Félicitations !

    Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !

    En savoir plus

    Retour

    Horaires

        Note :


        Avis sur Markov Random Fields de Iu A Rozanov  - Livre

        Note : 0 0 avis sur Markov Random Fields de Iu A Rozanov  - Livre

        Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.


        Présentation Markov Random Fields de Iu A Rozanov

         - Livre

        Livre - Iu A Rozanov - 01/11/1982 - Langue : Anglais

        Auteur(s) : Iu A Rozanov - Y a RozanovEditeur : Springer-Verlag New York Inc.Langue : AnglaisParution : 01/11/1982Format : Moyen, de 350g à 1kgNombre de pages : 201 ...

      • Auteur(s) : Iu A Rozanov - Y a Rozanov
      • Editeur : Springer-Verlag New York Inc.
      • Langue : Anglais
      • Parution : 01/11/1982
      • Format : Moyen, de 350g à 1kg
      • Nombre de pages : 201
      • Résumé :
        In this book we study Markov random functions of several variables. What is traditionally meant by the Markov property for a random process (a random function of one time variable) is connected to the concept of the phase state of the process and refers to the independence of the behavior of the process in the future from its behavior in the past, given knowledge of its state at the present moment. Extension to a generalized random process immediately raises nontrivial questions about the definition of a suitable phase state, so that given the state, future behavior does not depend on past behavior. Attempts to translate the Markov property to random functions of multi-dimensional time, where the role of past and future are taken by arbitrary complementary regions in an appro? priate multi-dimensional time domain have, until comparatively recently, been carried out only in the framework of isolated examples. How the Markov property should be formulated for generalized random functions of several variables is the principal question in this book. We think that it has been substantially answered by recent results establishing the Markov property for a whole collection of different classes of random functions. These results are interesting for their applications as well as for the theory. In establishing them, we found it useful to introduce a general probability model which we have called a random field. In this book we investigate random fields on continuous time domains. Contents CHAPTER 1 General Facts About Probability Distributions ?1.

        Sommaire:
        1 General Facts About Probability Distributions.- ?1. Probability Spaces.- 1. Measurable Spaces.- 2. Distributions and Measures.- 3. Probability Spaces.- ?2. Conditional Distributions.- 1. Conditional Expectation.- 2. Conditional Probability Distributions.- ?3. Zero-One Laws. Regularity.- 1. Zero-One Law.- 2. Decomposition Into Regular Components.- ?4. Consistent Conditional Distributions.- 1. Consistent Conditional Distributions for a Given Probability Measure.- 2. Probability Measures with Given Conditional Distributions.- 3. Construction of Consistent Conditional Distributions.- ?5. Gaussian Probability Distributions.- 1. Basic Definitions and Examples.- 2. Some Useful Propositions.- 3. Gaussian Linear Functionals on Countably-Normed Hilbert Spaces.- 4. Polynomials of Gaussian Variables and Their Conditional Expectations.- 5. Hermite Polynomials and Multiple Stochastic Integrals.- 2 Markov Random Fields.- ?1. Basic Definitions and Useful Propositions.- 1. Splitting ?-algebras.- 2. Markov Random Processes.- 3. Random Fields; Markov Property.- 4. Transformations of Distributions which Preserve the Markov Property. Additive Functionals.- ?2. Stopping ?-algebras. Random Sets and the Strong Markov Property.- 1. Stopping ?-algebras.- 2. Random Sets.- 3. Compatible Random Sets.- 4. Strong Markov Property.- ?3. Gaussian Fields. Markov Behavior in the Wide Sense.- 1. Gaussian Random Fields.- 2. Splitting Spaces.- 3. Markov Property.- 4. Orthogonal Random Fields.- 5. Dual Fields. A Markov Criterion.- 6. Regularity Condition. Decomposition of a Markov Field into Regular and Singular Components.- 3 The Markov Property for Generalized Random Functions.- ?1. Biorthogonal Generalized Functions and the Duality Property.- 1. The Meaning of Biorthogonality for Generalized Functions in Hilbert Space.- 2. Duality of Biorthogonal Functions.- 3. The Markov Property for Generalized Functions.- ?2. Stationary Generalized Functions.- 1. Spectral Representation of Coupled Stationary Generalized Functions.- 2. Biorthogonal Stationary Functions.- 3. The Duality Condition and a Markov Criterion.- ?3. Biorthogonal Generalized Functions Given by a Differential Form.- 1. Basic Definitions.- 2. Conditions for Markov Behavior.- ?4. Markov Random Functions Generated by Elliptic Differential Forms.- 1. Levy Brownian Motion.- 2. Structure of Spaces for Given Elliptic Forms.- 3. Boundary Conditions.- 4. Regularity and the Dirichlet Problem.- ?5. Stochastic Differential Equations.- 1. Markov Transformations of White Noise.- 2. The Interpolation and Extrapolation Problems.- 3. The Brownian Sheet.- 4 Vector-Valued Stationary Functions.- ?1. Conditions for Existence of the Dual Field.- 1. Spectral Properties.- 2. Duality.- ?2. The Markov Property for Stationary Functions.- 1. The Markov Property When a Dual Field Exists.- 2. Analytic Markov Conditions.- ?3. Markov Extensions of Random Processes.- 1. Minimal Nonanticipating Extension.- 2. Markov Stationary Processes.- 3. Stationary Processes with Symmetric Spectra.- Notes.

        Détails de conformité du produit

        Consulter les détails de conformité de ce produit (

        Personne responsable dans l'UE

        )
        Neuf et occasion
        Le choixNeuf et occasion
        5% remboursés
        Minimum5% remboursés
        Satisfait ou remboursé
        La sécuritéSatisfait ou remboursé
        À votre écoute
        Le service clientsÀ votre écoute
        LinkedinFacebookTwitterInstagramYoutubePinterestTiktok
        visavisa
        mastercardmastercard
        klarnaklarna
        paypalpaypal
        floafloa
        americanexpressamericanexpress
        RakutenLogos.svg
        • Rakuten Kobo
        • Rakuten TV
        • Rakuten Viber
        • Rakuten Viki
        • Plus de services
        • À propos de Rakuten
        Rakuten.com