

Progress in Inverse Spectral Geometry - Andersson, Stig I.
- Format: Broché
- 212 pages Voir le descriptif
Vous en avez un à vendre ?
Vendez-le-vôtre90,99 €
Occasion · Comme Neuf
Ou 22,75 € /mois
- Payez directement sur Rakuten (CB, PayPal, 4xCB...)
- Récupérez le produit directement chez le vendeur
- Rakuten vous rembourse en cas de problème
Gratuit et sans engagement
Félicitations !
Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !
TROUVER UN MAGASIN
Retour

Avis sur Progress In Inverse Spectral Geometry Format Broché - Livre
0 avis sur Progress In Inverse Spectral Geometry Format Broché - Livre
Donnez votre avis et cumulez 5
Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.
Présentation Progress In Inverse Spectral Geometry Format Broché
- LivreAuteur(s) : Andersson, Stig I. - Lapidus, Michel L.Editeur : Springer Basel AgLangue : AnglaisParution : 01/10/2012Format : Moyen, de 350g à 1kgNombre de pages : 212Expédition :...
Résumé :
most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x,O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(?, t) = V(t)uoU? Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt,E* ?E), locally given by 00 K(x,y; t) = L>-IAk(~k ? 'Pk)(X,y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for? malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.
Biographie:
..
Sommaire:
Spectral Geometry: An Introduction and Background Material for this Volume.- Geometry Detected by a Finite Part of the Spectrum.- Spectral Geometry on Nilmanifolds.- Upper Bounds for the Poincar? Metric Near a Fractal Boundary.- Construction de Vari?t?s Isospectrales du Th?or?me de T. Sunada.- Inverse spectral theory for Riemannian foliations and curvature theory.- Computer Graphics and the Eigenfunctions for the Koch Snowflake Drum.- Inverse Spectral Geometry.- Inverse Spectral Geometry on Riemann Surfaces.- Quantum Ergodicity.
Détails de conformité du produit
Personne responsable dans l'UE