

Modern Graph Theory Algorithms with Python - Farrelly, Colleen M.
- Format: Broché
- 290 pages Voir le descriptif
Vous en avez un à vendre ?
Vendez-le-vôtreExpédition rapide et soignée depuis l`Angleterre - Délai de livraison: entre 10 et 20 jours ouvrés.
Nos autres offres
-
22,18 €
Produit Neuf
-
0,00 €
0,01 € dès 30,00 € chez ce vendeur - Livré entre le 2 et le 5 août
-
0,00 €
-
53,79 €
Produit Neuf
Ou 13,45 € /mois
- Livraison à 0,01 €
Nouvel article expédié dans le 24H à partir des Etats Unis Livraison au bout de 14 à 21 jours ouvrables.
-
56,73 €
Produit Neuf
Ou 14,18 € /mois
- Livraison à 0,01 €
Expédition rapide et soignée depuis l`Angleterre - Délai de livraison: entre 10 et 20 jours ouvrés.
-
83,99 €
Occasion · Comme Neuf
Ou 21,00 € /mois
- Livraison : 25,00 €
- Protection acheteurs :
- 0,00 €
Service client à l'écoute et une politique de retour sans tracas - Livraison des USA en 3 a 4 semaines (2 mois si circonstances exceptionnelles) - La plupart de nos titres sont en anglais, sauf indication contraire. N'hésitez pas à nous envoyer un e-... Voir plus
- Payez directement sur Rakuten (CB, PayPal, 4xCB...)
- Récupérez le produit directement chez le vendeur
- Rakuten vous rembourse en cas de problème
Gratuit et sans engagement
Félicitations !
Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !
TROUVER UN MAGASIN
Retour

Avis sur Modern Graph Theory Algorithms With Python Format Broché - Livre Informatique
0 avis sur Modern Graph Theory Algorithms With Python Format Broché - Livre Informatique
Donnez votre avis et cumulez 5
Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.
-
Fourth Wing
Neuf dès 29,30 €
Occasion dès 12,31 €
-
Chamäleon : La Grammaire Allemande Sur Le Bout De La Langue - 137 Rappels, 323 Exercices Et Corrigés
1 avis
Neuf dès 22,40 €
-
Litteratures Allemandes - Anthologie Et Méthodes D'approche Des Textes, 2ème Édition
1 avis
Occasion dès 12,00 €
-
Vues De Paris À L'aquarelle - Ouvrage Bilingue
4 avis
Neuf dès 19,00 €
-
Civilisation Des Etats-Unis
Neuf dès 25,90 €
-
Michel Vaillant Le Fantôme Des 24 Heures
Occasion dès 19,88 €
-
40 Leçons Pour Parler Italien (2 Cd Audio)
4 avis
Neuf dès 29,90 €
Occasion dès 16,00 €
-
La Mort De Radiguet. Yukio Mishima. Bilingue. Gallimard. Traduit Du Japonais Par Dominique Palme.(2012)
2 avis
Occasion dès 28,00 €
-
Fichte, Reden An Die Deutsche Nation
Neuf dès 21,00 €
-
Fiches De Civilisation Américaine Et Britannique
Neuf dès 26,50 €
Occasion dès 21,00 €
-
The Reconstruction Of Nations
Neuf dès 30,09 €
-
Civilisation Britannique
1 avis
Neuf dès 24,90 €
-
Anglais Spécial Toeic - Cahier De Vacances
Occasion dès 30,59 €
-
Record Of Lodoss War Illustrations
2 avis
Occasion dès 20,00 €
-
Handling The Big Jets
Neuf dès 65,05 €
Occasion dès 32,84 €
-
Apprendre L'italien - Niveau Débutants-A2 (1 Cd Audio Mp3)
1 avis
Occasion dès 12,00 €
-
Zen Flesh, Zen Bones
Neuf dès 20,10 €
-
A Likely Lad
Neuf dès 32,85 €
Occasion dès 12,00 €
-
A Guide To The Project Management Body Of Knowledge (Pmbok® Guide) ? Seventh Edition And The Standard For Project Management (English)
Neuf dès 23,40 €
-
Professional English In Use Engineering - Technical English For Professionals
Neuf dès 52,95 €
Occasion dès 29,99 €
Produits similaires
Présentation Modern Graph Theory Algorithms With Python Format Broché
- Livre InformatiqueAuteur(s) : Farrelly, Colleen M. - Mutombo, Franck KalalaEditeur : Packt PublishingLangue : AnglaisParution : 01/06/2024Format : Moyen, de 350g à 1kgNombre de pages : 290Dimensions : 23.5 x...
Résumé :
Solve challenging and computationally intensive analytics problems by leveraging network science and graph algorithms Key Features: - Learn how to wrangle different types of datasets and analytics problems into networks - Leverage graph theoretic algorithms to analyze data efficiently - Apply the skills you gain to solve a variety of problems through case studies in Python - Purchase of the print or Kindle book includes a free PDF eBook Book Description: We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You'll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you'll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you'll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you'll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python. What You Will Learn: - Transform different data types, such as spatial data, into network formats - Explore common network science tools in Python - Discover how geometry impacts spreading processes on networks - Implement machine learning algorithms on network data features - Build and query graph databases - Explore new frontiers in network science such as quantum algorithms Who this book is for: If you're a researcher or industry professional analyzing data and are curious about network science approaches to data, this book is for you. To get the most out of the book, basic knowledge of Python, including pandas and NumPy, as well as some experience working with datasets is required. This book is also ideal for anyone interested in network science and learning how graph algorithms are used to solve science and engineering problems. R programmers may also find this book helpful as many algorithms also have R implementations....
Biographie:
..
Sommaire:
Solve challenging and computationally intensive analytics problems by leveraging network science and graph algorithms Key Features - Learn how to wrangle different types of datasets and analytics problems into networks - Leverage graph theoretic algorithms to analyze data efficiently - Apply the skills you gain to solve a variety of problems through case studies in Python - Purchase of the print or Kindle book includes a free PDF eBook Book Description We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You'll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you'll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you'll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you'll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python. What you will learn - Transform different data types, such as spatial data, into network formats - Explore common network science tools in Python - Discover how geometry impacts spreading processes on networks - Implement machine learning algorithms on network data features - Build and query graph databases - Explore new frontiers in network science such as quantum algorithms Who this book is for If you're a researcher or industry professional analyzing data and are curious about network science approaches to data, this book is for you. To get the most out of the book, basic knowledge of Python, including pandas and NumPy, as well as some experience working with datasets is required. This book is also ideal for anyone interested in network science and learning how graph algorithms are used to solve science and engineering problems. R programmers may also find this book helpful as many algorithms also have R implementations. Table of Contents - What is a Network? - Wrangling Data into Networks with NetworkX and igraph - Demographic Data - Transportation Data - Ecological Data - Stock Market Data - Goods Prices/Sales Data - Dynamic Social Networks - Machine Learning for Networks - Pathway Mining - Mapping Language Families - an Ontological Approach - Graph Databases - Putting It All Together - New Frontiers...
Détails de conformité du produit
Personne responsable dans l'UE