

Engineering AI Systems - Bass, Len
- Format: Broché
- 320.0 pages Voir le descriptif
Vous en avez un à vendre ?
Vendez-le-vôtre81,99 €
Occasion · Comme Neuf
Ou 20,50 € /mois
- Payez directement sur Rakuten (CB, PayPal, 4xCB...)
- Récupérez le produit directement chez le vendeur
- Rakuten vous rembourse en cas de problème
Gratuit et sans engagement
Félicitations !
Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !
TROUVER UN MAGASIN
Retour

Avis sur Engineering Ai Systems Format Broché - Livre Informatique
0 avis sur Engineering Ai Systems Format Broché - Livre Informatique
Donnez votre avis et cumulez 5
Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.
-
Toda Mafalda
Occasion dès 70,62 €
-
117 Days Adrift
Occasion dès 92,26 €
-
Cricut Joy
Neuf dès 51,50 €
Occasion dès 100,00 €
-
Le Livre D'urantia
Occasion dès 50,00 €
-
Century Series In Color (F-100 Super Sabre; F-101 Voodoo; F-102 Delta Dagger; F-104 Starfighter; F-105 Thunderchief; F-106 Delta Dart) - Fighting Colors Series (6501)
Occasion dès 54,82 €
-
The World Atlas Of Wine 8th Edition
Occasion dès 83,00 €
-
7: - Best Karate 7: Jitte,Hangetsu, Empi
Occasion dès 53,35 €
-
Noah Davis
1 avis
Neuf dès 57,36 €
-
Initiation
Occasion dès 48,99 €
-
Valency And Bonding
Neuf dès 59,51 €
-
Warhammer 40,000 Rulebook
Occasion dès 86,76 €
-
A Companion To The Cantos Of Ezra Pound
Neuf dès 48,81 €
Occasion dès 50,80 €
-
Ice Cold - A Hip-Hop Jewelry History
1 avis
Neuf dès 80,00 €
Occasion dès 70,04 €
-
Les Trains Blindes: De 1825 À Nos Jours
2 avis
Occasion dès 101,81 €
-
Borderlands 2 Game Of The Year Edition Strategy Guide
1 avis
Neuf dès 43,51 €
-
Building Scientific Apparatus
Neuf dès 50,69 €
-
Gianni Motti
Occasion dès 48,99 €
-
Matthew 1-7
Neuf dès 141,89 €
Occasion dès 76,98 €
-
The Art Of Monsters University
Occasion dès 52,99 €
-
The Bayeux Tapestry
Neuf dès 44,05 €
Produits similaires
Présentation Engineering Ai Systems Format Broché
- Livre InformatiqueAuteur(s) : Bass, Len - Lu, Qinghua - Weber, Ingo - Zhu, LimingEditeur : Pearson EducationLangue : AnglaisParution : 01/02/2025Format : Moyen, de 350g à 1kgNombre de pages : 320.0 ...
Résumé : Master the Engineering of AI Systems: The Essential Guide for Architects and Developers In today's rapidly evolving world, integrating artificial intelligence (AI) into your systems is no longer optional. Engineering AI Systems: Architecture and DevOps Essentials is a comprehensive guide to mastering the complexities of AI systems engineering. This book combines robust software architecture with cutting-edge DevOps practices to deliver high-quality, reliable, and scalable AI solutions. Experts Len Bass, Qinghua Lu, Ingo Weber, and Liming Zhu demystify the complexities of engineering AI systems, providing practical strategies and tools for seamlessly incorporating AI in your systems. You will gain a comprehensive understanding of the fundamentals of AI and software engineering and how to combine them to create powerful AI systems. Through real-world case studies, the authors illustrate practical applications and successful implementations of AI in small- to medium-sized enterprises across various industries, and offer actionable strategies for designing, building, and operating AI systems that deliver real business value.
Biographie: Preface xiii Chapter 1: Introduction 1 Chapter 2: Software Engineering Background 23 Chapter 3: AI Background 47 Chapter 4: Foundation Models 71 Chapter 5: AI Model Life Cycle 97 Chapter 6: System Life Cycle 117 Chapter 7: Reliability 143 Chapter 8: Performance 155 Chapter 9: Security 175 Chapter 10: Privacy and Fairness 191 Chapter 11: Observability 203 Chapter 12: The Fraunhofer Case Study: Using a Pretrained Language Model for Tendering 213 Chapter 13: The ARM Hub Case Study: Chatbots for Small and Medium-Size Australian Enterprises 235
Acknowledgments xvii
About the Authors xix
1.1 What We Talk about When We Talk about Things: Terminology 2
1.2 Achieving System Qualities 4
1.3 Life-Cycle Processes 6
1.4 Software Architecture 10
1.5 AI Model Quality 13
1.6 Dealing with Uncertainty 19
1.7 Summary 20
1.8 Discussion Questions 21
1.9 For Further Reading 21
2.1 Distributed Computing 23
2.2 DevOps Background 35
2.3 MLOps Background 42
2.4 Summary 44
2.5 Discussion Questions 45
2.6 For Further Reading 45
3.1 Terminology 48
3.2 Selecting a Model 49
3.3 Preparing the Model for Training 65
3.4 Summary 69
3.5 Discussion Questions 69
3.6 For Further Reading 69
4.1 Foundation Models 71
4.2 Transformer Architecture 72
4.3 Alternatives in FM Architectures 74
4.4 Customizing FMs 75
4.5 Designing a System Using FMs 86
4.6 Maturity of FMs and Organizations 91
4.7 Challenges of FMs 93
4.8 Summary 94
4.9 Discussion Questions 94
4.10 For Further Reading 94
5.1 Developing the Model 97
5.2 Building the Model 108
5.3 Testing the Model 109
5.4 Release 114
5.5 Summary 114
5.6 Discussion Questions 115
5.7 For Further Reading 115
6.1 Design 118
6.2 Developing Non-AI Modules 121
6.3 Build 122
6.4 Test 123
6.5 Release and Deploy 125
6.6 Operate, Monitor, and Analyze 135
6.7 Summary 140
6.8 Discussion Questions 141
6.9 For Further Reading 141
7.1 Fundamental Concepts 143
7.2 Preventing Faults 145
7.3 Detecting Faults 149
7.4 Recovering from Faults 152
7.5 Summary 154
7.6 Discussion Questions 154
7.7 For Further Reading 154
8.1 Efficiency 155
8.2 Accuracy 164
8.3 Summary 173
8.4 Discussion Questions 173
8.5 For Further Reading 174
9.1 Fundamental Concepts 176
9.2 Approaches to Mitigating Security Concerns 180
9.3 Summary 188
9.4 Discussion Questions 189
9.5 For Further Reading 189
10.1 Privacy in AI Systems 192
10.2 Fairness in AI Systems 193
10.3 Achieving Privacy 194
10.4 Achieving Fairness 197
10.5 Summary 201
10.6 Discussion Questions 201
10.7 For Further Reading 202
11.1 Fundamental Concepts 203
11.2 Evolving from Monitorability to Observability 204
11.3 Approaches for Enhancing Observability 207
11.4 Summary 211
11.5 Discussion Questions 211
11.6 For Further Reading 212
12.1 The Problem Context 214
12.2 Case Study Description and Setup 217
12.3 Summary 232
12.4 Takeaways 233
12.5 Discussion Questions 233
12.6 For Further Reading 233
13.1 Introduction 235
13.2 Our Approach 236
13.3 LLMs in SME Manufacturing 238
13.4 A RAG-Based Chatbot for SME Manufacturing 238
13.5 Architecture of the ARM Hub Chatbot 239
13.6 MLOps in ARM Hub 244
13.7 Ongoing Work 251
1...
Sommaire: Equip yourself with the tools and understanding to lead your organization's AI initiatives. Whether you are a technical lead, software engineer, or business strategist, this book provides the essential insights you need to successfully engineer AI systems. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
©
Détails de conformité du produit
Personne responsable dans l'UE