Personnaliser

OK
Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group
ClubR
Euro

Mettre en vente

Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group

Active Machine Learning with Python - Masson-Forsythe, Margaux

Note : 0

0 avis
  • Soyez le premier à donner un avis

Vous en avez un à vendre ?

Vendez-le-vôtre
Filtrer par :
Neuf (2)
Occasion
Reconditionné

52,13 €

Produit Neuf

  • Ou 13,03 € /mois

    • Livraison à 0,01 €
    Voir les modes de livraison

    rarewaves-us

    PRO Vendeur favori

    4,7/5 sur + de 1 000 ventes

    Nouvel article expédié dans le 24H à partir des Etats Unis Livraison au bout de 20 à 30 jours ouvrables.

    Nos autres offres

    • 63,94 €

      Produit Neuf

      Ou 15,99 € /mois

      • Livraison à 0,01 €
      Voir les modes de livraison
      4,8/5 sur + de 1 000 ventes

      Expédition rapide et soignée depuis l`Angleterre - Délai de livraison: entre 10 et 20 jours ouvrés.

    Publicité
     
    Vous avez choisi le retrait chez le vendeur à
    • Payez directement sur Rakuten (CB, PayPal, 4xCB...)
    • Récupérez le produit directement chez le vendeur
    • Rakuten vous rembourse en cas de problème

    Gratuit et sans engagement

    Félicitations !

    Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !

    En savoir plus

    Retour

    Horaires

        Note :


        Avis sur Active Machine Learning With Python Format Broché  - Livre Informatique

        Note : 0 0 avis sur Active Machine Learning With Python Format Broché  - Livre Informatique

        Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.


        Présentation Active Machine Learning With Python Format Broché

         - Livre Informatique

        Livre Informatique - Masson-Forsythe, Margaux - 01/03/2024 - Broché - Langue : Anglais

        Auteur(s) : Masson-Forsythe, MargauxEditeur : Packt PublishingLangue : AnglaisParution : 01/03/2024Format : Moyen, de 350g à 1kgNombre de pages : 176Expédition : 341Dimensions : 23.5 x 19.1...

      • Auteur(s) : Masson-Forsythe, Margaux
      • Editeur : Packt Publishing
      • Langue : Anglais
      • Parution : 01/03/2024
      • Format : Moyen, de 350g à 1kg
      • Nombre de pages : 176
      • Expédition : 341
      • Dimensions : 23.5 x 19.1 x 1.0
      • Résumé :
        Use active machine learning with Python to improve the accuracy of predictive models, streamline the data analysis process, and adapt to evolving data trends, fostering innovation and progress across diverse fieldsKey FeaturesLearn how to implement a pipeline for optimal model creation from large datasets and at lower costs Gain profound insights within your data while achieving greater efficiency and speed Apply your knowledge to real-world use cases and solve complex ML problems Purchase of the print or Kindle book includes a free PDF eBook Book Description Building accurate machine learning models requires quality data-lots of it. However, for most teams, assembling massive datasets is time-consuming, expensive, or downright impossible. Led by Margaux Masson-Forsythe, a seasoned ML engineer and advocate for surgical data science and climate AI advancements, this hands-on guide to active machine learning demonstrates how to train robust models with just a fraction of the data using Python's powerful active learning tools. You'll master the fundamental techniques of active learning, such as membership query synthesis, stream-based sampling, and pool-based sampling and gain insights for designing and implementing active learning algorithms with query strategy and Human-in-the-Loop frameworks. Exploring various active machine learning techniques, you'll learn how to enhance the performance of computer vision models like image classification, object detection, and semantic segmentation and delve into a machine AL method for selecting the most informative frames for labeling large videos, addressing duplicated data. You'll also assess the effectiveness and efficiency of active machine learning systems through performance evaluation. By the end of the book, you'll be able to enhance your active learning projects by leveraging Python libraries, frameworks, and commonly used tools.What you will learnMaster the fundamentals of active machine learning Understand query strategies for optimal model training with minimal data Tackle class imbalance, concept drift, and other data challenges Evaluate and analyze active learning model performance Integrate active learning libraries into workflows effectively Optimize workflows for human labelers Explore the finest active learning tools available today Who this book is for Ideal for data scientists and ML engineers aiming to maximize model performance while minimizing costly data labeling, this book is your guide to optimizing ML workflows and prioritizing quality over quantity. Whether you're a technical practitioner or team lead, you'll benefit from the proven methods presented in this book to slash data requirements and iterate faster. Basic Python proficiency and familiarity with machine learning concepts such as datasets and convolutional neural networks is all you need to get started.Table of ContentsIntroducing Active Machine Learning Designing Query Strategy Frameworks Managing the Human in the Loop Applying Active Learning to Computer Vision Leveraging Active Learning for Big Data Evaluating and Enhancing Efficiency Utilizing Tools and Packages for Active Learning

        Biographie:
        Margaux Masson-Forsythe is a skilled machine learning engineer and advocate for advancements in surgical data science and climate AI. As the Director of Machine Learning at Surgical Data Science Collective, she builds computer vision models to detect surgical tools in videos and track procedural motions. Masson-Forsythe manages a multidisciplinary team and oversees model implementation, data pipelines, infrastructure, and product delivery. With a background in computer science and expertise in machine learning, computer vision, and geospatial analytics, she has worked on projects related to reforestation, deforestation monitoring, and crop yield prediction.

        Détails de conformité du produit

        Consulter les détails de conformité de ce produit (

        Personne responsable dans l'UE

        )
        Neuf et occasion
        Le choixNeuf et occasion
        5% remboursés
        Minimum5% remboursés
        Satisfait ou remboursé
        La sécuritéSatisfait ou remboursé
        À votre écoute
        Le service clientsÀ votre écoute
        LinkedinFacebookTwitterInstagramYoutubePinterestTiktok
        visavisa
        mastercardmastercard
        klarnaklarna
        paypalpaypal
        floafloa
        americanexpressamericanexpress
        RakutenLogos.svg
        • Rakuten Kobo
        • Rakuten TV
        • Rakuten Viber
        • Rakuten Viki
        • Plus de services
        • À propos de Rakuten
        Rakuten.com