

Machine Learning for Imbalanced Data - Abhishek, Kumar
- Format: Broché
- 344 pages Voir le descriptif
Vous en avez un à vendre ?
Vendez-le-vôtreExpédition rapide et soignée depuis l`Angleterre - Délai de livraison: entre 10 et 20 jours ouvrés.
Nos autres offres
-
101,94 €
Produit Neuf
Ou 25,49 € /mois
- Livraison à 0,01 €
Nouvel article expédié dans le 24H à partir des Etats Unis Livraison au bout de 14 à 21 jours ouvrables.
-
79,99 €
Occasion · Comme Neuf
Ou 20,00 € /mois
- Livraison : 25,00 €
- Protection acheteurs :
- 0,00 €
Service client à l'écoute et une politique de retour sans tracas - Livraison des USA en 3 a 4 semaines (2 mois si circonstances exceptionnelles) - La plupart de nos titres sont en anglais, sauf indication contraire. N'hésitez pas à nous envoyer un e-... Voir plus
- Payez directement sur Rakuten (CB, PayPal, 4xCB...)
- Récupérez le produit directement chez le vendeur
- Rakuten vous rembourse en cas de problème
Gratuit et sans engagement
Félicitations !
Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !
TROUVER UN MAGASIN
Retour

Avis sur Machine Learning For Imbalanced Data Format Broché - Livre Informatique
0 avis sur Machine Learning For Imbalanced Data Format Broché - Livre Informatique
Donnez votre avis et cumulez 5
Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.
-
The Chinese Art Book
Neuf dès 197,99 €
Occasion dès 47,29 €
-
Toda Mafalda
Occasion dès 70,62 €
-
Cricut Joy
Neuf dès 51,50 €
Occasion dès 100,00 €
-
Le Livre D'urantia
Occasion dès 50,00 €
-
Century Series In Color (F-100 Super Sabre; F-101 Voodoo; F-102 Delta Dagger; F-104 Starfighter; F-105 Thunderchief; F-106 Delta Dart) - Fighting Colors Series (6501)
Occasion dès 54,82 €
-
The World Atlas Of Wine 8th Edition
Occasion dès 83,00 €
-
7: - Best Karate 7: Jitte,Hangetsu, Empi
Occasion dès 53,35 €
-
Peugeot 206 Petrol & Diesel (98 - 01) Haynes Repair Manual
Neuf dès 40,97 €
-
Warhammer 40,000 Rulebook
Occasion dès 86,76 €
-
Les Trains Blindes: De 1825 À Nos Jours
2 avis
Occasion dès 101,81 €
-
Physiology Of The Heart
Neuf dès 52,91 €
Occasion dès 98,78 €
-
Building Scientific Apparatus
Neuf dès 59,88 €
-
Gianni Motti
Occasion dès 48,99 €
-
Musculoskeletal Mri
Neuf dès 44,61 €
-
Trail Guide To The Body
Neuf dès 44,61 €
-
Khonsari's Cardiac Surgery
Neuf dès 44,61 €
Occasion dès 474,99 €
-
Real Analysis
Neuf dès 44,61 €
Occasion dès 158,30 €
-
Meyers' Dynamic Radiology Of The Abdomen
Neuf dès 44,61 €
Occasion dès 285,99 €
-
Beethoven: Complete String Quartets, Transcribed For Four-Hand Piano, 2 Series
Occasion dès 52,99 €
-
Matthew 1-7
Neuf dès 141,89 €
Occasion dès 76,98 €
Produits similaires
Présentation Machine Learning For Imbalanced Data Format Broché
- Livre InformatiqueAuteur(s) : Abhishek, Kumar - Abdelaziz, MounirEditeur : Packt PublishingLangue : AnglaisParution : 01/11/2023Format : Moyen, de 350g à 1kgNombre de pages : 344Expédition : 643Dimensions :...
Résumé :
Take your machine learning expertise to the next level with this essential guide, utilizing libraries like imbalanced-learn, PyTorch, scikit-learn, pandas, and NumPy to maximize model performance and tackle imbalanced dataKey FeaturesUnderstand how to use modern machine learning frameworks with detailed explanations, illustrations, and code samples Learn cutting-edge deep learning techniques to overcome data imbalance Explore different methods for dealing with skewed data in ML and DL applications Purchase of the print or Kindle book includes a free eBook in the PDF format Book Description As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance. Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods. As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique. By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.What you will learnUse imbalanced data in your machine learning models effectively Explore the metrics used when classes are imbalanced Understand how and when to apply various sampling methods such as over-sampling and under-sampling Apply data-based, algorithm-based, and hybrid approaches to deal with class imbalance Combine and choose from various options for data balancing while avoiding common pitfalls Understand the concepts of model calibration and threshold adjustment in the context of dealing with imbalanced datasets Who this book is for This book is for machine learning practitioners who want to effectively address the challenges of imbalanced datasets in their projects. Data scientists, machine learning engineers/scientists, research scientists/engineers, and data scientists/engineers will find this book helpful. Though complete beginners are welcome to read this book, some familiarity with core machine learning concepts will help readers maximize the benefits and insights gained from this comprehensive resource.Table of ContentsIntroduction to Data Imbalance in Machine Learning Oversampling Methods Undersampling Methods Ensemble Methods Cost-Sensitive Learning Data Imbalance in Deep Learning Data-Level Deep Learning Methods Algorithm-Level Deep Learning Techniques Hybrid Deep Learning Methods Model Calibration Appendix
Biographie:
Kumar Abhishek is a seasoned Senior Machine Learning Engineer at Expedia Group, US, specializing in risk analysis and fraud detection for Expedia brands. With over a decade of experience at companies such as Microsoft, Amazon, and a Bay Area startup, Kumar holds an MS in Computer Science from the University of Florida.
Détails de conformité du produit
Personne responsable dans l'UE