Personnaliser

OK
Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group
ClubR
Euro

Mettre en vente

Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group

Machine Learning for Imbalanced Data - Abhishek, Kumar

Note : 0

0 avis
  • Soyez le premier à donner un avis

Vous en avez un à vendre ?

Vendez-le-vôtre
Filtrer par :
Neuf (2)
Occasion (1)
Reconditionné

101,94 €

Produit Neuf

  • Ou 25,49 € /mois

    • Livraison à 0,01 €
    Voir les modes de livraison

    rarewaves-uk

    PRO Vendeur favori

    4,8/5 sur + de 1 000 ventes

    Expédition rapide et soignée depuis l`Angleterre - Délai de livraison: entre 10 et 20 jours ouvrés.

    Nos autres offres

    • 101,94 €

      Produit Neuf

      Ou 25,49 € /mois

      • Livraison à 0,01 €
      Voir les modes de livraison
      4,7/5 sur + de 1 000 ventes

      Nouvel article expédié dans le 24H à partir des Etats Unis Livraison au bout de 14 à 21 jours ouvrables.

    • 79,99 €

      Occasion · Comme Neuf

      Ou 20,00 € /mois

      • Livraison : 25,00 €
      Voir les modes de livraison
      • Protection acheteurs :
      • 0,00 €
      4,6/5 sur + de 1 000 ventes
      Service client à l'écoute et une politique de retour sans tracas - Livraison des USA en 3 a 4 semaines (2 mois si circonstances exceptionnelles) - La plupart de nos titres sont en anglais, sauf indication contraire. N'hésitez pas à nous envoyer un e-... Voir plus
    Publicité
     
    Vous avez choisi le retrait chez le vendeur à
    • Payez directement sur Rakuten (CB, PayPal, 4xCB...)
    • Récupérez le produit directement chez le vendeur
    • Rakuten vous rembourse en cas de problème

    Gratuit et sans engagement

    Félicitations !

    Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !

    En savoir plus

    Retour

    Horaires

        Note :


        Avis sur Machine Learning For Imbalanced Data Format Broché  - Livre Informatique

        Note : 0 0 avis sur Machine Learning For Imbalanced Data Format Broché  - Livre Informatique

        Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.


        Présentation Machine Learning For Imbalanced Data Format Broché

         - Livre Informatique

        Livre Informatique - Abhishek, Kumar - 01/11/2023 - Broché - Langue : Anglais

        Auteur(s) : Abhishek, Kumar - Abdelaziz, MounirEditeur : Packt PublishingLangue : AnglaisParution : 01/11/2023Format : Moyen, de 350g à 1kgNombre de pages : 344Expédition : 643Dimensions :...

      • Auteur(s) : Abhishek, Kumar - Abdelaziz, Mounir
      • Editeur : Packt Publishing
      • Langue : Anglais
      • Parution : 01/11/2023
      • Format : Moyen, de 350g à 1kg
      • Nombre de pages : 344
      • Expédition : 643
      • Dimensions : 23.5 x 19.1 x 1.9
      • Résumé :
        Take your machine learning expertise to the next level with this essential guide, utilizing libraries like imbalanced-learn, PyTorch, scikit-learn, pandas, and NumPy to maximize model performance and tackle imbalanced dataKey FeaturesUnderstand how to use modern machine learning frameworks with detailed explanations, illustrations, and code samples Learn cutting-edge deep learning techniques to overcome data imbalance Explore different methods for dealing with skewed data in ML and DL applications Purchase of the print or Kindle book includes a free eBook in the PDF format Book Description As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance. Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods. As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique. By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.What you will learnUse imbalanced data in your machine learning models effectively Explore the metrics used when classes are imbalanced Understand how and when to apply various sampling methods such as over-sampling and under-sampling Apply data-based, algorithm-based, and hybrid approaches to deal with class imbalance Combine and choose from various options for data balancing while avoiding common pitfalls Understand the concepts of model calibration and threshold adjustment in the context of dealing with imbalanced datasets Who this book is for This book is for machine learning practitioners who want to effectively address the challenges of imbalanced datasets in their projects. Data scientists, machine learning engineers/scientists, research scientists/engineers, and data scientists/engineers will find this book helpful. Though complete beginners are welcome to read this book, some familiarity with core machine learning concepts will help readers maximize the benefits and insights gained from this comprehensive resource.Table of ContentsIntroduction to Data Imbalance in Machine Learning Oversampling Methods Undersampling Methods Ensemble Methods Cost-Sensitive Learning Data Imbalance in Deep Learning Data-Level Deep Learning Methods Algorithm-Level Deep Learning Techniques Hybrid Deep Learning Methods Model Calibration Appendix

        Biographie:
        Kumar Abhishek is a seasoned Senior Machine Learning Engineer at Expedia Group, US, specializing in risk analysis and fraud detection for Expedia brands. With over a decade of experience at companies such as Microsoft, Amazon, and a Bay Area startup, Kumar holds an MS in Computer Science from the University of Florida.

        Détails de conformité du produit

        Consulter les détails de conformité de ce produit (

        Personne responsable dans l'UE

        )
        Neuf et occasion
        Le choixNeuf et occasion
        5% remboursés
        Minimum5% remboursés
        Satisfait ou remboursé
        La sécuritéSatisfait ou remboursé
        À votre écoute
        Le service clientsÀ votre écoute
        LinkedinFacebookTwitterInstagramYoutubePinterestTiktok
        visavisa
        mastercardmastercard
        klarnaklarna
        paypalpaypal
        floafloa
        americanexpressamericanexpress
        RakutenLogos.svg
        • Rakuten Kobo
        • Rakuten TV
        • Rakuten Viber
        • Rakuten Viki
        • Plus de services
        • À propos de Rakuten
        Rakuten.com