

Interpretable Machine Learning with Python - Second Edition - Masís, Serg
- Format: Broché
- 606 pages Voir le descriptif
Vous en avez un à vendre ?
Vendez-le-vôtreExpédition rapide et soignée depuis l`Angleterre - Délai de livraison: entre 10 et 20 jours ouvrés.
Nos autres offres
-
78,99 €
Occasion · Très Bon État
Ou 19,75 € /mois
- Livraison : 25,00 €
- Protection acheteurs :
- 0,00 €
Service client à l'écoute et une politique de retour sans tracas - Livraison des USA en 3 a 4 semaines (2 mois si circonstances exceptionnelles) - La plupart de nos titres sont en anglais, sauf indication contraire. N'hésitez pas à nous envoyer un e-... Voir plus -
174,94 €
Produit Neuf
Ou 43,74 € /mois
- Livraison à 0,01 €
Expédition rapide et soignée depuis l`Angleterre - Délai de livraison: entre 10 et 20 jours ouvrés.
-
174,94 €
Produit Neuf
Ou 43,74 € /mois
- Livraison à 0,01 €
Nouvel article expédié dans le 24H à partir des Etats Unis Livraison au bout de 14 à 21 jours ouvrables.
- Payez directement sur Rakuten (CB, PayPal, 4xCB...)
- Récupérez le produit directement chez le vendeur
- Rakuten vous rembourse en cas de problème
Gratuit et sans engagement
Félicitations !
Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !
TROUVER UN MAGASIN
Retour

Avis sur Interpretable Machine Learning With Python - Second Edition Format Broché - Livre Informatique
0 avis sur Interpretable Machine Learning With Python - Second Edition Format Broché - Livre Informatique
Donnez votre avis et cumulez 5
Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.
-
Toda Mafalda
Occasion dès 70,62 €
-
117 Days Adrift
Occasion dès 92,26 €
-
Cricut Joy
Neuf dès 51,50 €
Occasion dès 100,00 €
-
Building With Straw Bales: A Practical Manual For Self-Builders And Architects Volume 6
Neuf dès 39,76 €
-
Le Livre D'urantia
Occasion dès 50,00 €
-
Century Series In Color (F-100 Super Sabre; F-101 Voodoo; F-102 Delta Dagger; F-104 Starfighter; F-105 Thunderchief; F-106 Delta Dart) - Fighting Colors Series (6501)
Occasion dès 54,82 €
-
The World Atlas Of Wine 8th Edition
Occasion dès 83,00 €
-
7: - Best Karate 7: Jitte,Hangetsu, Empi
Occasion dès 53,35 €
-
Noah Davis
1 avis
Neuf dès 57,36 €
-
Initiation
Occasion dès 48,99 €
-
Valency And Bonding
Neuf dès 59,51 €
-
Peugeot 206 Petrol & Diesel (98 - 01) Haynes Repair Manual
Neuf dès 40,97 €
-
Warhammer 40,000 Rulebook
Occasion dès 86,76 €
-
A Companion To The Cantos Of Ezra Pound
Neuf dès 48,81 €
Occasion dès 50,80 €
-
Ice Cold - A Hip-Hop Jewelry History
1 avis
Neuf dès 80,00 €
Occasion dès 70,04 €
-
Les Trains Blindes: De 1825 À Nos Jours
2 avis
Occasion dès 101,81 €
-
Borderlands 2 Game Of The Year Edition Strategy Guide
1 avis
Neuf dès 43,51 €
-
Building Scientific Apparatus
Neuf dès 50,69 €
-
Gianni Motti
Occasion dès 48,99 €
-
Jazz Chants Old And New
Occasion dès 40,97 €
Produits similaires
Présentation Interpretable Machine Learning With Python - Second Edition Format Broché
- Livre InformatiqueAuteur(s) : Masís, SergEditeur : Packt PublishingLangue : AnglaisParution : 01/10/2023Format : Moyen, de 350g à 1kgNombre de pages : 606Expédition : 1115Dimensions : 23.5 x 19.1 x 3.3 ...
Résumé :
A deep dive into the key aspects and challenges of machine learning interpretability using a comprehensive toolkit, including SHAP, feature importance, and causal inference, to build fairer, safer, and more reliable models. Purchase of the print or Kindle book includes a free eBook in PDF format.Key FeaturesInterpret real-world data, including cardiovascular disease data and the COMPAS recidivism scores Build your interpretability toolkit with global, local, model-agnostic, and model-specific methods Analyze and extract insights from complex models from CNNs to BERT to time series models Book Description Interpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models. Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps. In addition to the step-by-step code, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. By the end of the book, you'll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.What you will learnProgress from basic to advanced techniques, such as causal inference and quantifying uncertainty Build your skillset from analyzing linear and logistic models to complex ones, such as CatBoost, CNNs, and NLP transformers Use monotonic and interaction constraints to make fairer and safer models Understand how to mitigate the influence of bias in datasets Leverage sensitivity analysis factor prioritization and factor fixing for any model Discover how to make models more reliable with adversarial robustness Who this book is for This book is for data scientists, machine learning developers, machine learning engineers, MLOps engineers, and data stewards who have an increasingly critical responsibility to explain how the artificial intelligence systems they develop work, their impact on decision making, and how they identify and manage bias. It's also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a good grasp of the Python programming language is needed to implement the examples.Table of ContentsInterpretation, Interpretability and Explainability; and why does it all matter? Key Concepts of Interpretability Interpretation Challenges Global Model-agnostic Interpretation Methods Local Model-agnostic Interpretation Methods Anchors and Counterfactual Explanations Visualizing Convolutional Neural Networks Interpreting NLP Transformers Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis Feature Selection and Engineering for Interpretability Bias Mitigation and Causal Inference Methods Monotonic Constraints and Model Tuning for Interpretability Adversarial Robustness What's Next for Machine Learning Interpretability?
Biographie:
Serg Masi?s has been at the confluence of the internet, application development, and analytics for the last two decades. Currently, he's a climate and agronomic data scientist at Syngenta, a leading agribusiness company with a mission to improve global food security. Before that role, he co-founded a start-up, incubated by Harvard Innovation Labs, that combined the power of cloud computing and machine learning with principles in decision-making science to expose users to new places and events. Whether it pertains to leisure activities, plant diseases, or customer lifetime value, Serg is passionate about providing the often-missing link between data and decision-making-and machine learning interpretation helps bridge this gap robustly.
Détails de conformité du produit
Personne responsable dans l'UE