Personnaliser

OK
Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group
ClubR
Euro

Mettre en vente

Rakuten - Achat et vente en ligne de produits neufs et d'occasionRakuten group

Beginning Anomaly Detection Using Python-Based Deep Learning - Sridhar Alla

Note : 0

0 avis
  • Soyez le premier à donner un avis

Vous en avez un à vendre ?

Vendez-le-vôtre
Filtrer par :
Neuf (2)
Occasion (1)
Reconditionné

129,94 €

Produit Neuf

  • Ou 32,49 € /mois

    • Livraison à 0,01 €
    Voir les modes de livraison

    rarewaves-uk

    PRO Vendeur favori

    4,8/5 sur + de 1 000 ventes

    Expédition rapide et soignée depuis l`Angleterre - Délai de livraison: entre 10 et 20 jours ouvrés.

    Nos autres offres

    • 129,94 €

      Produit Neuf

      Ou 32,49 € /mois

      • Livraison à 0,01 €
      Voir les modes de livraison
      4,7/5 sur + de 1 000 ventes

      Nouvel article expédié dans le 24H à partir des Etats Unis Livraison au bout de 20 à 30 jours ouvrables.

    • 107,99 €

      Occasion · Comme Neuf

      Ou 27,00 € /mois

      • Livraison : 25,00 €
      Voir les modes de livraison
      • Protection acheteurs :
      • 0,00 €
      4,6/5 sur + de 1 000 ventes
      Service client à l'écoute et une politique de retour sans tracas - Livraison des USA en 3 a 4 semaines (2 mois si circonstances exceptionnelles) - La plupart de nos titres sont en anglais, sauf indication contraire. N'hésitez pas à nous envoyer un e-... Voir plus
    Publicité
     
    Vous avez choisi le retrait chez le vendeur à
    • Payez directement sur Rakuten (CB, PayPal, 4xCB...)
    • Récupérez le produit directement chez le vendeur
    • Rakuten vous rembourse en cas de problème

    Gratuit et sans engagement

    Félicitations !

    Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !

    En savoir plus

    Retour

    Horaires

        Note :


        Avis sur Beginning Anomaly Detection Using Python - Based Deep Learning Format Broché  - Livre Littérature jeunesse

        Note : 0 0 avis sur Beginning Anomaly Detection Using Python - Based Deep Learning Format Broché  - Livre Littérature jeunesse

        Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.


        Présentation Beginning Anomaly Detection Using Python - Based Deep Learning Format Broché

         - Livre Littérature jeunesse

        Livre Littérature jeunesse - Sridhar Alla - 01/01/2024 - Broché - Langue : Anglais

        Auteur(s) : Sridhar Alla - Suman Kalyan AdariEditeur : Apress L.P.Langue : AnglaisParution : 01/01/2024Format : Moyen, de 350g à 1kgNombre de pages : 548Expédition : 1018Dimensions : 25.4 x...

      • Auteur(s) : Sridhar Alla - Suman Kalyan Adari
      • Editeur : Apress L.P.
      • Langue : Anglais
      • Parution : 01/01/2024
      • Format : Moyen, de 350g à 1kg
      • Nombre de pages : 548
      • Expédition : 1018
      • Dimensions : 25.4 x 17.8 x 3.0
      • Résumé :
        This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.

        Biographie:

        Suman Kalyan Adari is a machine learning research engineer. He obtained a B.S. in Computer Science at the University of Florida and a M.S. in Computer Science specializing in Machine Learning at Columbia University. He has been conducting deep learning research in adversarial machine learning since his freshman year at the University of Florida and presented at the IEEE Dependable Systems and Networks workshop on Dependable and Secure Machine Learning held in Portland, Oregon in June 2019. Currently, he works on various anomaly detection tasks spanning behavioral tracking and geospatial trajectory modeling.

        He is passionate about deep learning, and specializes in various fields ranging from video processing, generative modeling, object tracking, time-series modeling, and more.

        Sridhar Alla is the co-founder and CTO of Bluewhale, which helps organizations big and small in building AI-driven big data solutions and analytics, as well as SAS2PY, a powerful tool to automate migration of SAS workloads to Python-based environments using Pandas or PySpark. He is a published author and an avid presenter at numerous conferences, including Strata, Hadoop World, and Spark Summit. He also has several patents filed with the US PTO on large-scale computing and distributed systems. He has extensive hands-on experience in several technologies, including Spark, Flink, Hadoop, AWS, Azure, Tensorflow, Cassandra, and others. He spoke on Anomaly Detection Using Deep Learning at Strata SFO in March 2019 and also presented at Strata London in October 2019. He was born in Hyderabad, India and now lives in New Jersey, USA with his wife Rosie, his daughters Evelyn andMadelyn, and his son, Jayson. When he is not busy writing code, he loves to spend time with his family. He also enjoys training, coaching, and organizing meetups.

        Sommaire:

        Chapter 1: Introduction to Anomaly Detection.- Chapter 2: Introduction to Data Science.- Chapter 3: Introduction to Machine Learning.- Chapter 4: Traditional Machine Learning Algorithms. -Chapter 5: Introduction to Deep Learning.- Chapter 6: Autoencoders.- Chapter 7: Generative Adversarial Networks.- Chapter 8 Long Short-Term Memory Models.- Chapter 9: Temporal Convolutional Networks.- Chapter 10: Transformers.- Chapter 11: Practical Use Cases and Future Trends of Anomaly Detection.

        Détails de conformité du produit

        Consulter les détails de conformité de ce produit (

        Personne responsable dans l'UE

        )
        Neuf et occasion
        Le choixNeuf et occasion
        5% remboursés
        Minimum5% remboursés
        Satisfait ou remboursé
        La sécuritéSatisfait ou remboursé
        À votre écoute
        Le service clientsÀ votre écoute
        LinkedinFacebookTwitterInstagramYoutubePinterestTiktok
        visavisa
        mastercardmastercard
        klarnaklarna
        paypalpaypal
        floafloa
        americanexpressamericanexpress
        RakutenLogos.svg
        • Rakuten Kobo
        • Rakuten TV
        • Rakuten Viber
        • Rakuten Viki
        • Plus de services
        • À propos de Rakuten
        Rakuten.com