

Beginning Anomaly Detection Using Python-Based Deep Learning - Sridhar Alla
- Format: Broché
- 548 pages Voir le descriptif
Vous en avez un à vendre ?
Vendez-le-vôtreExpédition rapide et soignée depuis l`Angleterre - Délai de livraison: entre 10 et 20 jours ouvrés.
Nos autres offres
-
129,94 €
Produit Neuf
Ou 32,49 € /mois
- Livraison à 0,01 €
Nouvel article expédié dans le 24H à partir des Etats Unis Livraison au bout de 20 à 30 jours ouvrables.
-
107,99 €
Occasion · Comme Neuf
Ou 27,00 € /mois
- Livraison : 25,00 €
- Protection acheteurs :
- 0,00 €
Service client à l'écoute et une politique de retour sans tracas - Livraison des USA en 3 a 4 semaines (2 mois si circonstances exceptionnelles) - La plupart de nos titres sont en anglais, sauf indication contraire. N'hésitez pas à nous envoyer un e-... Voir plus
- Payez directement sur Rakuten (CB, PayPal, 4xCB...)
- Récupérez le produit directement chez le vendeur
- Rakuten vous rembourse en cas de problème
Gratuit et sans engagement
Félicitations !
Nous sommes heureux de vous compter parmi nos membres du Club Rakuten !
TROUVER UN MAGASIN
Retour

Avis sur Beginning Anomaly Detection Using Python - Based Deep Learning Format Broché - Livre Littérature jeunesse
0 avis sur Beginning Anomaly Detection Using Python - Based Deep Learning Format Broché - Livre Littérature jeunesse
Donnez votre avis et cumulez 5
Les avis publiés font l'objet d'un contrôle automatisé de Rakuten.
-
Toda Mafalda
Occasion dès 70,62 €
-
Century Series In Color (F-100 Super Sabre; F-101 Voodoo; F-102 Delta Dagger; F-104 Starfighter; F-105 Thunderchief; F-106 Delta Dart) - Fighting Colors Series (6501)
Occasion dès 54,82 €
-
The World Atlas Of Wine 8th Edition
Occasion dès 83,00 €
-
Warhammer 40,000 Rulebook
Occasion dès 86,76 €
-
Les Trains Blindes: De 1825 À Nos Jours
2 avis
Occasion dès 101,81 €
-
Building Scientific Apparatus
Neuf dès 59,88 €
-
Matthew 1-7
Neuf dès 141,89 €
Occasion dès 76,98 €
-
The Flash By Joshua Williamson Omnibus Vol. 1
Neuf dès 151,41 €
-
The Old Straight Track: Its Mounds, Beacons, Moats, Sites And Mark Stones
Occasion dès 141,99 €
-
Les Plantes Tropicales À Épices
Occasion dès 58,00 €
-
The Ancient Egyptian Pyramid Texts
Neuf dès 67,59 €
-
117 Days Adrift
Occasion dès 92,26 €
-
Propaganda And The Holy Writ Of The Process Church Of The Final Judgment
Neuf dès 98,99 €
-
David Hockney A Year In Normandie Und Sammlung Würth
Neuf dès 60,76 €
-
Noah Davis
1 avis
Neuf dès 57,36 €
-
Valency And Bonding
Neuf dès 70,33 €
-
4c
3 avis
Occasion dès 55,00 €
-
Insight: Pre-Intermediate. Workbook
Occasion dès 56,83 €
-
Advances In Atomic Physics
Neuf dès 97,70 €
Occasion dès 87,12 €
-
The West And China Since 1500
Neuf dès 58,67 €
Produits similaires
Présentation Beginning Anomaly Detection Using Python - Based Deep Learning Format Broché
- Livre Littérature jeunesseAuteur(s) : Sridhar Alla - Suman Kalyan AdariEditeur : Apress L.P.Langue : AnglaisParution : 01/01/2024Format : Moyen, de 350g à 1kgNombre de pages : 548Expédition : 1018Dimensions : 25.4 x...
Résumé :
This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.
Biographie: Suman Kalyan Adari is a machine learning research engineer. He obtained a B.S. in Computer Science at the University of Florida and a M.S. in Computer Science specializing in Machine Learning at Columbia University. He has been conducting deep learning research in adversarial machine learning since his freshman year at the University of Florida and presented at the IEEE Dependable Systems and Networks workshop on Dependable and Secure Machine Learning held in Portland, Oregon in June 2019. Currently, he works on various anomaly detection tasks spanning behavioral tracking and geospatial trajectory modeling. He is passionate about deep learning, and specializes in various fields ranging from video processing, generative modeling, object tracking, time-series modeling, and more.
Sommaire: Chapter 1: Introduction to Anomaly Detection.- Chapter 2: Introduction to Data Science.- Chapter 3: Introduction to Machine Learning.- Chapter 4: Traditional Machine Learning Algorithms. -Chapter 5: Introduction to Deep Learning.- Chapter 6: Autoencoders.- Chapter 7: Generative Adversarial Networks.- Chapter 8 Long Short-Term Memory Models.- Chapter 9: Temporal Convolutional Networks.- Chapter 10: Transformers.- Chapter 11: Practical Use Cases and Future Trends of Anomaly Detection.
Détails de conformité du produit
Personne responsable dans l'UE